Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Trees can differ enormously in their crown architectural traits, such as the scaling relationships between tree height, crown width and stem diameter. Yet despite the importance of crown architecture in shaping the structure and function of terrestrial ecosystems, we lack a complete picture of what drives this incredible diversity in crown shapes. Using data from 374,888 globally distributed trees, we explore how climate, disturbance, competition, functional traits, and evolutionary history constrain the height and crown width scaling relationships of 1914 tree species. We find that variation in height–diameter scaling relationships is primarily controlled by water availability and light competition. Conversely, crown width is predominantly shaped by exposure to wind and fire, while also covarying with functional traits related to mechanical stability and photosynthesis. Additionally, we identify several plant lineages with highly distinctive stem and crown forms, such as the exceedingly slender dipterocarps of Southeast Asia, or the extremely wide crowns of legume trees in African savannas. Our study charts the global spectrum of tree crown architecture and pinpoints the processes that shape the 3D structure of woody ecosystems.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.more » « less
-
Abstract. Plant transpiration links physiological responses ofvegetation to water supply and demand with hydrological, energy, and carbonbudgets at the land–atmosphere interface. However, despite being the mainland evaporative flux at the global scale, transpiration and its response toenvironmental drivers are currently not well constrained by observations.Here we introduce the first global compilation of whole-plant transpirationdata from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021).We harmonized and quality-controlled individual datasets supplied bycontributors worldwide in a semi-automatic data workflow implemented in theR programming language. Datasets include sub-daily time series of sap flowand hydrometeorological drivers for one or more growing seasons, as well asmetadata on the stand characteristics, plant attributes, and technicaldetails of the measurements. SAPFLUXNET contains 202 globally distributeddatasets with sap flow time series for 2714 plants, mostly trees, of 174species. SAPFLUXNET has a broad bioclimatic coverage, withwoodland/shrubland and temperate forest biomes especially well represented(80 % of the datasets). The measurements cover a wide variety of standstructural characteristics and plant sizes. The datasets encompass theperiod between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data areavailable for most of the datasets, while on-site soil water content isavailable for 56 % of the datasets. Many datasets contain data for speciesthat make up 90 % or more of the total stand basal area, allowing theestimation of stand transpiration in diverse ecological settings. SAPFLUXNETadds to existing plant trait datasets, ecosystem flux networks, and remotesensing products to help increase our understanding of plant water use,plant responses to drought, and ecohydrological processes. SAPFLUXNET version0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The“sapfluxnetr” R package – designed to access, visualize, and processSAPFLUXNET data – is available from CRAN.more » « less
An official website of the United States government
